
13. 

of the Method of Grids in Gas Dynamics [in Russian], Moscow State University 9ress, 

Moscow (1971), No. i. 
W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory, 2nd ed., Academic Press, 

New York (1967). 

FLOW IN A CHANNEL WITH SUCTION ON ONE SIDE: DETACHMENT FROM AN 

IMPERMEABLE WALL AND EFFECT OF ROTATION AROUND THE TRANSVERSE AXIS 

S. A. Vasil'ev and E. M. Smirnov UDC 532.516 

i. Plane Flow: Review of Formulations and Results. We shall study the plane flow of 
a viscous incompressible liquid ~ong a channel formed by two parallel walls, under condi- 
tions such that one is impermeable and liquid is suctioned uniformly through the other wall. 
We ~enote the distance between the walls by H. We shallassume that the flow occurs in the 
y0z plane; we place the origin of the Cartesian coordinate system in the inlet section on 
the impermeable wall and we orient the z-axis parallel to the walls in the direction of the 
flow. The equations of motion and continuity have the form 

aw aw t Op ( O~ a2w 
w ~ + v @ ,o az + v ~ az 2 + a " J '  g 

av , a~ t a p  ( c32v , a2e ) am Ov 
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( 1 . 1 )  

The solution of the equations must satisfy the boundary conditions 

y = O: w - -  v = O; y ~ H: iv = O, v = v~ ( 1 . 2 )  

(v s > 0 is the suction velocity). 

In [i, 2] it is shown that the system (I.i) can have a self-similar solution of the 
form 

w = (Wm -- Gz/H)/'(~), v = ~/(~). (1.3) 

Here W m is the mean flow at the inlet; N = y/H. For the problem at hand the function f(N) 
satisfies the equation 

f , , +  R~ ( / ' ~ -  H ~) = k ( 1 . 4 )  

and the boundary conditions 

l (o)  = f ( o )  = o, 1(~) = t ,  f ' ( i )  = o. (1.5) 

One of the boundary conditions is used to find the constant k which determines the 
longitudinal pressure gradient. The parameter of the self-similar solution is Reynolds num- 
ber R~ = vsH/v, contructed based on the suction velocity. In [3] the problem (1.4) and 
(1.5) is solved analytically by the method of expansion in a series in powers of R s and the 
solution is valid for small values of this parameter. We do not know of any other solutions 
of the self-similar problem. 

The solutions of the two-dimensional problem (i.i) and (1.2) were found by the finite- 
difference method in [4]. The purpose of the calculations was to study the flow field in a 
flat heat pipe. The downstream end of the pipe was assumed to be closed. The conditions at 
the inlet into the suctioned section (condenser section) were not fixed; they were determined 
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TABLE 1 

ins ~q. --]~ Rs ~ --]~ 

i4 
i4,4 (I) 
t4,4 (II) 
t4,4 (lIl) 

t6 

0,134 
O,21i 
0,375 
0,43i 
0,433 

0,0026 
O,Oii2 
0,i34 
0,537 
0,744 

t8 
20 
30 
40 

0,430 
0,426 
0,4i6 
0,405 

0,874 
0,954 
i ,i33 
1,207 

by the character of the flow in other sections. The results presented nonetheless show that 
in all cases the inlet profile is close to a Poiseuille parabola. The length of the suc- 
tioned section was 100H/3, and R s assumed values from 1 to 50. Differences from flow in a 
channel with impermeable walls are already perceived for R s = 2. For R s = 20 and 50 detach- 
ment arises approximately midway above the channel and for R s = 50 it already develops in 
the first cell of the computing grid (we note that there are only nine steps of the grid 
on the entire suctioned section). 

In [3] the problem of flow development in a channel suctioned on one side is studied 
based on parabolized equations of motion; the pressure is assumed to be constant in each 
transverse section. The dependence of the coordinate of the point of detachment of the flow 
on R s for two types of inlet profile =uniform and p~rabolic - is presented as the main re- 
sult of the calculations. 

2. Plane Flow: New Results. The main goal of this work is to study three-dimensional 
flow numerically. In so doing we have obtained a number of new results pertaining to plane 
flows. This permitted comparing plane and three-dimensional flows under comparable condi- 
tions. 

The self-similar problem (1.4) and (1.5) was reduced to a Cauchy problem and solved 
numerically. The calculations showed that f"(0) vanishes for R~ = R~ : 13A3- The profiles 
of the longitudinal component of the velocity with a section of return flow correspond to 
higher values of R s. We note that the analytical solution of [3], including terms in the 
series with the zeroth and first powers of the parameter Rs, gives R~ = 13.12. Such good 
agreement with the numerical solution is somewhat unexpected, since the applicability of 
this analytical solution is, strictly speaking, limited to small values of R s. Table 1 
gives the values of the coordinate ~ -- ~,(R~) for which f'(~) changes sign; the interval 
0<~<q, corresponds to the section with return flow; the values of /,--f(N = N,)are also 
given. The ratio If, I/(i ~ GI) can be regarded as a quantitative characteristic of the 
intensity of the return flow. We note that the depdences n,(Rs), f,(R s) have two turning 
points, the first of which corresponds to R s = 14.5 (turning toward lower values of R s) while 
the second one corresponds to R s = 14.1 (turning toward higher values of Rs). In the inter- 

val 14.1 < R s < 14.5 q, and f, each have three values; this situation is illustrated in 
Table 1 by the computational results for R s = 14.4. 

The problem (i.i) and (1.2) was integrated numerically using the scheme proposed in [5] 
(a similar scheme is described below in application to the three-dimensional problem). The 
calculations were performed for channels with length L ~ = L/H = 5 and i0, and the parameter 
R s was varied from 2 to 50. A uniform velocity profile (w = W m and v = 0) was given at the 
inlet. The formulation of the problem was completed by the condition for sticking on the 
impermeable end wall. The difference grid with uniform steps contained 30 • 86 nodes. The 
calculations showed that for 2 5 Rs ~ 12 the flow at the impermeable wall contains near the 
endface a small region with a negative value of the longitudinal velocity component. Rapid 
growth of the size of the zone of return flow is observed starting with R s = 12-14. It is 
interesting that Rs* = 13.13, obtained in the self-similar solution, falls into the indicated 
range of values of R s. 

We shall characterize the dimensions of the zone of return flow by its length Er, de- 
fined as the distance from the point of detachment to the end wall, and the maximum width b r. 
Table 2 gives the values of l~ : It~L, b~ = br/H as a function of R s and L~ the values 
of s ~ based on the results of the solution of [3], obtained based on the parabol- 
ized equations of motion, are given for comparison. One can see from Table 2 that for 
R s ~ 14 the length of the channel L ~ has virtually no effect on Er ~ and a stronger effect 
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on the width of the zone of return flow. In the same region of R s the computed values of 
Zr ~ are on the whole close to the results of [3]. Comparison with the data of [3, 4] shows 
that with a parabolic input profile w the detachment of flow from the impermeable wall 
develops for smaller values of z/L and, as a consequence, Zr ~ is greater than for a uniform 

input profile. 

Figure 1 shows profiles of the longitudinal component of the velocity in the channel 
L ~ = 5 with R s = 40; the curves 1-5 correspond to z/H = 5/6, 5/3, 5/2, 10/3, and 25/6. In 
the first two sections the maximum of the velocity is shifted toward the impermeable wall. 
This is due to the fact that the boundary layers on the walls of the channel do not develop 
in the same way - the rapidly growing layer on the impermeable wall has a stronger dis- 
placing effect. Downstream the maximum of the velocity is shifted increasing more toward 
the wall with suction. The presented profiles and the profiles for other values of R s show 
that in the zone of return flow the velocities are low. This result does not agree with the 
results following from the self-similar solution obtained for the same values of R s. 

3. Formulation of the Three-Dimensional Problem. The need for studies of three-dimen- 
sional flows in channels with a permeable wall arises, in particular, in connection with the 
development of new convective systems for cooling nozzles and working blades in high-tempera- 
ture turbines. In a number of systems the cooling medium flows along radical channels in 
the blade and flows out into the interblade space through the permeable cladding of the blade. 
In the front part of the working blade, where the maximum heat fluxes occur, the permeable 
wall of the radial channel makes a nearly right angle with the rotation axis. 

We shall study a flow in a channel with a square cross section H • H, which rotates with 
a constant angular velocity ~ around the transverse axis. As before, we orient the z-axis of 
the Cartesian coordinate system Oxyz parall~l to the walls of the channel in the direction 
of the flow; we orient the rotation axis parallel to the y-axis; and, liquid is suctioned 
through the wall perpendicular to this axis. 

We write the equations for the steady-state relative motion in the dimensionless form,: 
choosing for the scale the size H and average flow velocity W m at the inlet into the channel: 

( V ' v ) V = - -  g r a d p * - - 2 K ~  A V ; ~  ( 3 . 1 )  

div V : 0. ( 3 . 2 )  

Here V is the velocity vector with components u, v, and w, corresponding to the x, y, and 
z-axes; P, = p-- p~r~/2 is the modified pressure; r is the shortest distance to the rota- 
tion axis; Re = WmIf/v is the Reynold's number; and K= ~H/Wm is the rotation parameter. 

The condition of sticking is imposed on all bounding impermeable walls and the distribu- 
tion of the suction velocity v~(x,z) and the condition that two other components vanish are 
imposed on the permeable wall. In concrete situations the formulation of the problem is com- 
pleted by giving conditions at the inlet and outlet from the channel or at the closed end. 

4. Numerical Method. We shall briefly describe the method employed to find the numeri- 
cal solutions, which is based on the method of stabilization combined with the method of arti- 
ficial compressibility. A term with a derivative with respect to a fictitious stabilization 
time is introduced into Eq. (3.1), and the equation of continuity is written in the relaxa- 
tional form A3p ,  ~or+ div V = 0 (A is an iteration parameter). The problem is then formulated 
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TABLE 2 

Rs lOr=lrlL [ bOr=br/H l~=lr/L b~ lOr=lr/L I b~ 
L o 

5 10 >>l [31 

t0 
t2 
t4 
t6 
t8 
20 
30 
40 
50 

0,05 
0,07 
0,t2 
0,20 
0,27 
0,32 
0,48 
0,55 
0,60 

0,t3 
0,t6 
0,25 
0,27 
0,31 
0,35 
0,48 
0,57 
0,63 

0,02 
0,04 
0,i0 
0,20 
0 27 
0,32 
0,49 
0,57 
0,32 

0,11 
0,t5 
0,23 
0,29 
0,34 
0,40 
0,55 
0,62 
0,65 

0 
0 

0,09 
0,t8 
0,27 
0,32 
0,47 
0,54 
0,60 

M 

relative to the increments of the vector U = { u , v , w , p . }  on the n-th time layer 

AUS*I/At @ A~(U n ~- = O, ' AU n+1) (4 I) 

where U s , AU n+1 are the values of the vector U and i t s  increment at the n- th  time layer; A n 
is  a nonlinear matrix operator; and, At is  a step along the f i c t i t i o u s  time axis. 

The equations (4.1) are l inear ized  r e l a t i v e  to the increments AU n+1 and s p l i t  with res- 
pect to the spa t i a l  coordinates: 

(E  ~- AtA~) AU ~+a/3 = -- AtASU ~, 

(E + AtA~) AU ~+2/~ = au s+~/~, 
( E  + AtA~) AU ~+1 = AU ~+2/3. 

n 
Here AU n§ AU n+~/s are the intermediate grid functions; Ax n, A u, A~ are the matrix opera- 

tors of the equations of motion, written in a conservative form of fractional steps along the 

directions x, y, and z: 

-0( 0 ) 
~x - l~e ox 4-2u~" 

d 
o-V(v ~.) 

0 (w ~.) __ 2K  
-oF 

t o 
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0 
7l 
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The point in the tables of the operators denotes multiplication by the corresponding com- 
n ponents of the columns AU n+I/3, AU~+2/a AU n+1 . We stress that summing A~, Ay, A~ does not 

give the operator A n because the latter is nonlinear. The derivatives appearing in the 
operators are approximated by central differences on the grid of the method of markers and 
cells with shifted nodes. The vector U is sought as the stationary solution of Eqs. (4.1), 
satisfying the condition A~Un~ . The described difference scheme was essentially taken 
from [5]; the new element is that the action of the Coriolis force is taken into account. 

In the problem at hand the effects owing to suction and rotation lead to large grad- 
ients of the velocity at the walls perpendicular to the y-axis. To improve the resolution 
of the numerical method a transformation to the new coordinate Yz, related with y by the 

relation 

0.5 sign gl 
g =  t - -  exp (--  a) [ i - - e x p ( - - 2 a l y ~ l ) ]  + 0 . 5 ,  

where a is the exponential transformation parameter and the coordinate y is measured from the 
impermeable wall while Yz varies over the interval [-1/2, 1/2], was made in (3.1) and (3.2). 
As a result, the derivatives with respect to y in the operators A n, A~ ~ were replaced by the 

relations 

a t - - e x p ( - a )  e x p ( 2 a l y l l )  a 
ay a ay I ' 

= , exp  ( 4 a l g  1[)  + 2 a s i g n 9 1  �9 
Oy 2 a 

5. Computational Results. The numerical solutions of the three-dimensional problem 
were found for a channel with length L ~ = 5. The condition of uniform suction was imposed 
on the wall with coordinate y = I; the other walls were assumed to be impermeable, including 
also the end wall which terminated the channel. All results presented below were obtained 
on a 16 x 16 • 44 grid with the parameter of nonuniformity of the grid a = 1.4, Re = 200, 
and R s = Re/5 = 40. 

We shall first study flow in a nonrotating channel. Figure2 shows the distributions 
of the longitudinal component of the velocity in three normal sections with the coordinates 
z = 5/6, 5/2, and 25/6 (at the inlet to the channel w is distributed uniformly). Like in 
the case of the plane flow, near the inlet to the channel the maximum of velocity is shifted 
twoard the impermeable wall. Detachment develops downstream: a region with small negative 
velocities forms at the impermeable wall, and the direct flow is concentrated at the suc- 
tioned wall. In the middle plane s ~ = 0.37, which is less than in the plane flow. The 
displacement of the line of detachment downstream is obviously due to the displacing effect 
of the boundary layers on the side walls bounding the flow along the x-axis. 
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The calculations of the flow in a rotating channel were performed for K = 0.2, 0.4, and 
0.6. For velocity components at the inlet to the channel the conditions u = 0, v = 0, and w = 
i ~ 2K(x--I/2) were imposed; these conditions correspond to flow with nearly zero absolute 
vorticity at the channel inlet. 

The flow field for K = 0.4 is illustrated in Fig. 3: a - the distributions w(x, y) for 
values of z indicated above for Fig. 2; b - the profiles u(y) in the middle plane x = const 
for values of z with a step of 10/21, starting with z = 25/84; the scale for w and u is the 
same. Comparing Fig. 3a with Fig. 2 shows that the effect of rotation is very significant. 
Detachment from the wall with coordinate y = 0 is suppressed, but a wide region of return 
flow at the side wall develops (x = 1 for the positive direction of rotation). As K in- 
creases there is a tendency for the field w to become uniform in the direction of the rota- 
tion axis (the y-axis); this tendency is characteristic for flows of rotating liquid, in- 
cluding for flows in rotating channels [6]. Figure 3b shows that flow of liquid in the 
direction of the x-axis plays an important role inthe formation of the flow field. 

The velocity level in the zone of return flow at the wall x = 1 is very significant; 
the maximum velocity of the return f~ow with K = 0.2, 0.4, and 0.6 is 27, 39, and 49% of W m. 
The formation of this zone is a result of the summation of two effects: the acquiring of 
vorticity 2~ by the particles of fluid owing to interaction with the walls and intensifica- 
tion of the acquired vorticity by means of stretching of the vortex tubes by the superposed 

suction. 
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